Fredeco documentation!
Readme
Description
This python package allows its users to retrieve economic data provided by FRED® API. Although fredeco
uses FRED® API, it is not endorsed or certified by the Federal Reserve Bank of St. Louis.
Features
Retrieve a time series, when indicating the ID of the related indicator;
Retrieve several time series, indicating their IDs;
Search for all indicators related to the keywords indicated by the user;
Find all indicators of a category of series, by indicating the ID of the category;
Find the dates of all release of an indicator;
Find the information related to an indicator, such as the notes where the source of data can be found.
Installation
$ pip install fredeco
Dependencies
Usage
The usage of the package is explained in this section, whereas some examples are provided in the Examples section of the full documentation web page of the package. It is strongly recommanded to read that section.
Each user of
fredeco
should have his own FRED® API key. To accomodate a new user offredeco
. One of the functions of the package,request_api_key()
allows the user to open the webpage to request a FRED® API key.To retrieve data, the user of
fredeco
should indicate the ID of an indicator, such as GDP for the US Gross Domestic Product, and GDPCA for the US Real Gross Domestic Product. Data related to an economic indicator, with the functionfred_series()
, or several indicators, with the functionfred_multi_series()
, can be retreived. Remember that each user should have her/his own API key as explained previously.fredeco
allows its users to retrieve information about an indicator, as illustrated in the section Examples. To retrieve information about an indicator, the functionfred_info_series()
should be used.Sometimes, a user may not know the ID of an indicator for which she/he whish to retrieve data. The user may indicate one or several keywords in the function
fred_search()
to search for indicators.fredeco
allows its users to quickly explore key statistics and information related to data retrieved, as follows, wheredf
is a data frame of one or several indicators retrieved from FRED® API. Theexplore()
function does not require the user to add a FRED® API key. However, it cannot be used for data frame where the columns names are not FRED® indicators ID. Indeed, in addition to providing some statistics about the indicators, it also retrieves and provides information related to their unit of measurement and their title.The package
fredeco
has two modules:fredData
, where one can find the functions to retrieve and explore FRED® indicators;fredSearch
, where once can search for information related to data provided by FRED® API. The search index, in the documentation, can be used to see the description of each function.
License and terms of use
fredeco
is created by Raulin L. Cadet. It is licensed under the terms of the MIT license.By using the package
fredeco
, you are also agreeing to be bound by the FRED® API Terms of Use. The link to these Terms of Use is: Here.
Examples of usage
Import modules needed
In addition to the modules of fredeco
, matplotlib
is imported because it will be used to quickly plot data retrieved from FRED® API. My API key is not provided, for the illustrations below. It is saved in the object my_fred_key
.
[2]:
from fredeco.fredData import fred_series, fred_multi_series, explore
from fredeco.fredSearch import fred_list_series, fred_info_series, fred_search, fred_vintagedates
import matplotlib
Retrieve data
Below, data related to the US GDP are retrieved.
[10]:
df_one=fred_series(series='GDP',fred_api=my_fred_key)
df_one.tail(5)
[10]:
GDP | |
---|---|
Dates | |
2019-01-01 | 21380.976 |
2020-01-01 | 21060.474 |
2021-01-01 | 23315.081 |
2022-01-01 | 25462.722 |
2023-01-01 | NaN |
Below data related to several indicators are retrieved.
[9]:
df_multi=fred_multi_series(series=['GDP','GDPCA'],fred_api=my_fred_key)
df_multi.tail(5)
[9]:
GDP | GDPCA | |
---|---|---|
Dates | ||
2019-01-01 | 21380.976 | 19036.052 |
2020-01-01 | 21060.474 | 18509.143 |
2021-01-01 | 23315.081 | 19609.812 |
2022-01-01 | 25462.722 | 20014.128 |
2023-01-01 | NaN | NaN |
Search for information
If a user want to look for indicators related to price index, fredeco
allows to search for them as follows.
[32]:
fred_search(text='price index',fred_api=my_fred_key)
[32]:
id | realtime_start | realtime_end | title | observation_start | observation_end | frequency | frequency_short | units | units_short | seasonal_adjustment | seasonal_adjustment_short | last_updated | popularity | group_popularity | notes | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | CPIAUCSL | 2023-07-11 | 2023-07-11 | Consumer Price Index for All Urban Consumers: ... | 1947-01-01 | 2023-05-01 | Monthly | M | Index 1982-1984=100 | Index 1982-1984=100 | Seasonally Adjusted | SA | 2023-06-13 07:44:03-05 | 94 | 94 | The Consumer Price Index for All Urban Consume... |
1 | CPIAUCNS | 2023-07-11 | 2023-07-11 | Consumer Price Index for All Urban Consumers: ... | 1913-01-01 | 2023-05-01 | Monthly | M | Index 1982-1984=100 | Index 1982-1984=100 | Not Seasonally Adjusted | NSA | 2023-06-13 07:44:06-05 | 71 | 94 | Handbook of Methods (https://www.bls.gov/opub/... |
2 | CSUSHPINSA | 2023-07-11 | 2023-07-11 | S&P/Case-Shiller U.S. National Home Price Index | 1987-01-01 | 2023-04-01 | Monthly | M | Index Jan 2000=100 | Index Jan 2000=100 | Not Seasonally Adjusted | NSA | 2023-06-27 08:13:02-05 | 90 | 92 | For more information regarding the index, plea... |
3 | CUUS0000SA0 | 2023-07-11 | 2023-07-11 | Consumer Price Index for All Urban Consumers: ... | 1984-01-01 | 2022-07-01 | Semiannual | SA | Index 1982-1984=100 | Index 1982-1984=100 | Not Seasonally Adjusted | NSA | 2023-01-12 07:38:17-06 | 43 | 94 | NaN |
4 | CSUSHPISA | 2023-07-11 | 2023-07-11 | S&P/Case-Shiller U.S. National Home Price Index | 1987-01-01 | 2023-04-01 | Monthly | M | Index Jan 2000=100 | Index Jan 2000=100 | Seasonally Adjusted | SA | 2023-06-27 08:13:03-05 | 80 | 92 | For more information regarding the index, plea... |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
995 | CUUS0000SAF113 | 2023-07-11 | 2023-07-11 | Consumer Price Index for All Urban Consumers: ... | 1984-01-01 | 2022-07-01 | Semiannual | SA | Index 1982-1984=100 | Index 1982-1984=100 | Not Seasonally Adjusted | NSA | 2023-01-12 07:37:52-06 | 1 | 27 | NaN |
996 | CUUS0000SAF116 | 2023-07-11 | 2023-07-11 | Consumer Price Index for All Urban Consumers: ... | 1984-01-01 | 2022-07-01 | Semiannual | SA | Index 1982-1984=100 | Index 1982-1984=100 | Not Seasonally Adjusted | NSA | 2023-01-12 07:37:58-06 | 1 | 27 | NaN |
997 | RTFPNAJPA632NRUG | 2023-07-11 | 2023-07-11 | Total Factor Productivity at Constant National... | 1954-01-01 | 2019-01-01 | Annual | A | Index 2017=1 | Index 2017=1 | Not Seasonally Adjusted | NSA | 2023-02-27 14:32:04-06 | 26 | 26 | Source ID: rtfpna\n\nWhen using these data in ... |
998 | CPALTT01CHM657N | 2023-07-11 | 2023-07-11 | Consumer Price Index: All Items: Total: Total ... | 1960-01-01 | 2023-05-01 | Monthly | M | Growth rate previous period | Growth rate previous period | Not Seasonally Adjusted | NSA | 2023-06-23 12:37:05-05 | 17 | 26 | OECD descriptor ID: CPALTT01\nOECD unit ID: GP... |
999 | CHECPIALLMINMEI | 2023-07-11 | 2023-07-11 | Consumer Price Index: All Items: Total: Total ... | 1960-01-01 | 2023-05-01 | Monthly | M | Index 2015=100 | Index 2015=100 | Not Seasonally Adjusted | NSA | 2023-06-23 12:37:06-05 | 12 | 26 | Copyright, 2016, OECD. Reprinted with permissi... |
1000 rows × 16 columns
To request information about an economic indicator, such as GDPCA
, the package fredeco
can be used as follows:
[5]:
fred_info_series(fred_api=my_fred_key,series='GDPCA')
[5]:
{'realtime_start': '2023-07-11',
'realtime_end': '2023-07-11',
'seriess': [{'id': 'GDPCA',
'realtime_start': '2023-07-11',
'realtime_end': '2023-07-11',
'title': 'Real Gross Domestic Product',
'observation_start': '1929-01-01',
'observation_end': '2022-01-01',
'frequency': 'Annual',
'frequency_short': 'A',
'units': 'Billions of Chained 2012 Dollars',
'units_short': 'Bil. of Chn. 2012 $',
'seasonal_adjustment': 'Not Seasonally Adjusted',
'seasonal_adjustment_short': 'NSA',
'last_updated': '2023-03-30 07:54:04-05',
'popularity': 52,
'notes': 'BEA Account Code: A191RX\n\nA Guide to the National Income and Product Accounts of the United States (http://www.bea.gov/national/pdf/nipaguid.pdf) (NIPA)'}]}
These information are essential to know, to use for analysis. For example, the last information provided, the notes, indicate the source of data. The source should be provided, when using data retrieved from FRED® API.
To search for the list of economic indicators in a category, such as the category ID 125, one can proceed as follows.
[6]:
df_list=fred_list_series(fred_api=my_fred_key,category_id=125)
df_list.head(5)
[6]:
id | realtime_start | realtime_end | title | observation_start | observation_end | frequency | frequency_short | units | units_short | seasonal_adjustment | seasonal_adjustment_short | last_updated | popularity | group_popularity | notes | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | AITGCBN | 2023-07-11 | 2023-07-11 | Advance U.S. International Trade in Goods: Bal... | 2023-05-01 | 2023-05-01 | Monthly | M | Millions of Dollars | Mil. of $ | Not Seasonally Adjusted | NSA | 2023-06-28 07:31:03-05 | 2 | 23 | This advance estimate represents the current m... |
1 | AITGCBS | 2023-07-11 | 2023-07-11 | Advance U.S. International Trade in Goods: Bal... | 2023-05-01 | 2023-05-01 | Monthly | M | Millions of Dollars | Mil. of $ | Seasonally Adjusted | SA | 2023-06-28 07:31:01-05 | 23 | 23 | This advance estimate represents the current m... |
2 | BOPBCA | 2023-07-11 | 2023-07-11 | Balance on Current Account (DISCONTINUED) | 1960-01-01 | 2014-01-01 | Quarterly | Q | Billions of Dollars | Bil. of $ | Seasonally Adjusted | SA | 2014-06-18 08:41:28-05 | 7 | 8 | This series has been discontinued as a result ... |
3 | BOPBCAA | 2023-07-11 | 2023-07-11 | Balance on Current Account (DISCONTINUED) | 1960-01-01 | 2013-01-01 | Annual | A | Billions of Dollars | Bil. of $ | Not Seasonally Adjusted | NSA | 2014-06-18 08:41:28-05 | 2 | 8 | This series has been discontinued as a result ... |
4 | BOPBCAN | 2023-07-11 | 2023-07-11 | Balance on Current Account (DISCONTINUED) | 1960-01-01 | 2014-01-01 | Quarterly | Q | Billions of Dollars | Bil. of $ | Not Seasonally Adjusted | NSA | 2014-06-18 08:41:28-05 | 1 | 8 | This series has been discontinued as a result ... |
The code below allows to retrieve a list of the dates of the releases of an indicator. The illustration below considers the indicator ID FEDFUNDS
.
[7]:
fred_vintagedates(fred_api=my_fred_key, series='FEDFUNDS')
[7]:
['1996-12-03',
'1997-01-07',
'1997-02-04',
'1997-03-04',
'1997-04-08',
'1997-05-06',
'1997-06-03',
'1997-07-08',
'1997-08-05',
'1997-09-02',
'1997-10-07',
'1997-11-04',
'1997-12-02',
'1997-12-10',
'1998-01-06',
'1998-02-03',
'1998-03-03',
'1998-04-07',
'1998-05-05',
'1998-06-02',
'1998-07-07',
'1998-08-04',
'1998-09-08',
'1998-10-06',
'1998-11-03',
'1998-12-08',
'1999-01-05',
'1999-02-02',
'1999-03-02',
'1999-04-06',
'1999-05-04',
'1999-06-08',
'1999-07-06',
'1999-08-03',
'1999-09-07',
'1999-10-05',
'1999-11-02',
'1999-12-07',
'2000-01-04',
'2000-02-08',
'2000-03-07',
'2000-04-04',
'2000-05-02',
'2000-06-06',
'2000-07-05',
'2000-08-08',
'2000-09-05',
'2000-10-03',
'2000-11-07',
'2000-12-05',
'2001-01-02',
'2001-02-06',
'2001-03-06',
'2001-04-03',
'2001-05-08',
'2001-06-05',
'2001-07-03',
'2001-08-07',
'2001-09-04',
'2001-10-02',
'2001-11-06',
'2001-12-04',
'2002-01-08',
'2002-02-04',
'2002-03-04',
'2002-04-01',
'2002-05-06',
'2002-06-03',
'2002-07-01',
'2002-08-05',
'2002-09-03',
'2002-10-07',
'2002-11-04',
'2002-12-02',
'2003-01-06',
'2003-02-03',
'2003-03-03',
'2003-04-07',
'2003-05-05',
'2003-06-02',
'2003-07-07',
'2003-08-04',
'2003-09-02',
'2003-10-06',
'2003-11-03',
'2003-12-01',
'2004-01-05',
'2004-02-02',
'2004-03-01',
'2004-04-05',
'2004-05-03',
'2004-06-07',
'2004-07-06',
'2004-08-02',
'2004-09-07',
'2004-10-04',
'2004-11-01',
'2004-12-06',
'2005-01-03',
'2005-02-07',
'2005-03-07',
'2005-04-04',
'2005-05-02',
'2005-06-06',
'2005-07-05',
'2005-08-01',
'2005-09-06',
'2005-10-03',
'2005-11-07',
'2005-12-05',
'2006-01-03',
'2006-02-06',
'2006-03-06',
'2006-04-03',
'2006-05-01',
'2006-06-05',
'2006-07-03',
'2006-08-07',
'2006-09-05',
'2006-10-02',
'2006-11-06',
'2006-12-04',
'2007-01-03',
'2007-02-05',
'2007-03-05',
'2007-04-02',
'2007-05-07',
'2007-06-04',
'2007-07-02',
'2007-08-06',
'2007-09-04',
'2007-10-01',
'2007-11-05',
'2007-12-03',
'2008-01-07',
'2008-02-04',
'2008-03-03',
'2008-04-07',
'2008-05-05',
'2008-06-02',
'2008-07-07',
'2008-08-04',
'2008-09-02',
'2008-10-06',
'2008-11-03',
'2008-12-01',
'2009-01-05',
'2009-02-02',
'2009-03-02',
'2009-04-06',
'2009-05-04',
'2009-06-01',
'2009-07-06',
'2009-08-03',
'2009-09-08',
'2009-10-05',
'2009-11-02',
'2009-12-07',
'2010-01-04',
'2010-02-01',
'2010-03-01',
'2010-04-05',
'2010-05-03',
'2010-06-07',
'2010-07-06',
'2010-08-02',
'2010-09-07',
'2010-10-04',
'2010-11-01',
'2010-12-06',
'2011-01-03',
'2011-01-10',
'2011-01-11',
'2011-02-07',
'2011-03-07',
'2011-04-04',
'2011-05-02',
'2011-06-06',
'2011-07-05',
'2011-08-01',
'2011-09-06',
'2011-10-11',
'2011-11-07',
'2011-12-05',
'2012-01-09',
'2012-02-06',
'2012-03-05',
'2012-04-02',
'2012-05-07',
'2012-06-04',
'2012-07-02',
'2012-08-06',
'2012-09-04',
'2012-10-01',
'2012-11-05',
'2012-12-10',
'2013-01-07',
'2013-02-04',
'2013-03-04',
'2013-04-04',
'2013-05-06',
'2013-06-10',
'2013-07-08',
'2013-08-12',
'2013-09-03',
'2013-10-07',
'2013-11-04',
'2013-12-02',
'2014-01-06',
'2014-02-03',
'2014-03-04',
'2014-04-07',
'2014-05-05',
'2014-06-02',
'2014-07-10',
'2014-08-04',
'2014-09-02',
'2014-10-06',
'2014-11-03',
'2014-12-01',
'2015-01-05',
'2015-02-02',
'2015-03-02',
'2015-04-06',
'2015-05-04',
'2015-06-01',
'2015-07-01',
'2015-08-03',
'2015-09-14',
'2015-10-05',
'2015-11-02',
'2015-12-07',
'2016-01-04',
'2016-02-01',
'2016-03-07',
'2016-04-04',
'2016-05-02',
'2016-06-06',
'2016-07-05',
'2016-08-01',
'2016-09-06',
'2016-10-03',
'2016-11-03',
'2016-12-01',
'2017-01-03',
'2017-02-01',
'2017-03-01',
'2017-04-03',
'2017-05-01',
'2017-06-01',
'2017-07-03',
'2017-08-01',
'2017-09-01',
'2017-10-02',
'2017-11-01',
'2017-12-01',
'2018-01-02',
'2018-02-01',
'2018-03-01',
'2018-04-02',
'2018-05-01',
'2018-06-01',
'2018-07-02',
'2018-08-01',
'2018-09-04',
'2018-10-01',
'2018-11-01',
'2018-12-03',
'2019-01-02',
'2019-02-01',
'2019-03-01',
'2019-04-01',
'2019-05-01',
'2019-06-03',
'2019-07-01',
'2019-08-01',
'2019-09-03',
'2019-10-01',
'2019-11-01',
'2019-12-02',
'2020-01-02',
'2020-02-03',
'2020-03-02',
'2020-04-01',
'2020-05-01',
'2020-06-01',
'2020-07-01',
'2020-07-21',
'2020-08-03',
'2020-08-05',
'2020-09-01',
'2020-10-01',
'2020-10-13',
'2020-11-02',
'2020-12-01',
'2021-01-04',
'2021-02-01',
'2021-03-01',
'2021-04-01',
'2021-05-03',
'2021-06-01',
'2021-07-01',
'2021-08-02',
'2021-09-01',
'2021-10-01',
'2021-11-01',
'2021-12-01',
'2022-01-03',
'2022-02-01',
'2022-03-01',
'2022-04-01',
'2022-05-02',
'2022-06-01',
'2022-07-01',
'2022-08-01',
'2022-09-01',
'2022-10-03',
'2022-11-01',
'2022-12-01',
'2023-01-03',
'2023-02-01',
'2023-03-01',
'2023-04-03',
'2023-05-01',
'2023-06-01',
'2023-07-03']
Explore data
After retrieving data, one can use a fredeco
function to get some statistics and other informations about them. This is possible for one or several indicators, as illustrated below. We use the df_one
and df_multi
, the objects where have been stored data retrieved previously.
[18]:
explore(fred_api=my_fred_key,data=df_one)
[18]:
GDP | |
---|---|
Units | Billions of Dollars |
N | 76 |
Mean | 6873.642447 |
Median | 4188.2975 |
Std | 7055.960951 |
Min | 249.616 |
Max | 25462.722 |
CV | 1.019748 |
25% quantile | 795.633 |
50% quantile | 4188.2975 |
75% quantile | 11646.6365 |
skewness | 0.916755 |
kurtosis | -0.34893 |
[19]:
explore(fred_api=my_fred_key,data=df_multi)
[19]:
GDP | GDPCA | |
---|---|---|
Units | Billions of Dollars | Billions of Chained 2012 Dollars |
N | 76 | 77 |
Mean | 6873.642447 | 9018.846338 |
Median | 4188.2975 | 7637.704 |
Std | 7055.960951 | 5516.176475 |
Min | 249.616 | 2036.204 |
Max | 25462.722 | 20014.128 |
CV | 1.019748 | 0.607643 |
25% quantile | 795.633 | 4173.424 |
50% quantile | 4188.2975 | 7637.704 |
75% quantile | 11646.6365 | 13865.519 |
skewness | 0.916755 | 0.449427 |
kurtosis | -0.34893 | -1.146103 |
To explore data retrieved, one can quickly plot them, using the package matplotlib
. That’s why it has been called with import matplotlib
previously.
[21]:
df_one.tail(20).plot()
[21]:
<Axes: xlabel='Dates'>

[22]:
df_multi.tail(20).plot()
[22]:
<Axes: xlabel='Dates'>

fredeco
fredeco package
Submodules
fredeco.fredData module
- fredeco.fredData.explore(fred_api, data)[source]
Explore some key statistics of a data frame of indicators retreived from FRED®.
This function returns a data frame with some information related to each economic indicator of the data frame x. Most of the information provided are statistics calculated by the function for each one of the indicators. All columns names should be FRED® indicators IDs.
- Parameters:
fred_api (str) – Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED website.
x (data frame) – a data frame of indicators retreived from FRED®. All columns names should be FRED® indicators IDs.
Example
from fredeco.fredData import explore
explore(fred_api=’4e5rty8wfr’,df)
- fredeco.fredData.fred_multi_series(series, fred_api, frequency='a', starttime='1776-07-04', endtime='9999-12-31', transform='lin')[source]
Retrieve data for several economic indicators from FRED® API.
This method return a data frame of several variables.
- Parameters:
fred_api (str) – Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED website.
series (str) – A time series ID, such as GDP.
frequency (str) – The frequency of data. The default value is ‘a’ for annual data; ‘q’ is for quarterly data; ‘m’ is for monthly data
starttime (str) – The first date, as a string, of the time series data to retrieve. The default value is ‘1776-07-04’.
endtime (str) – The last date, as a string, of the time series data to retrieve. The default value is ‘9999-12-31’.
transform (str) –
Example
from fredeco.fredData import fred_multi_series
fred_multi_series(series=[‘GDP’,’GDPCA’],fred_api=’4e5rty8wfr’)
- fredeco.fredData.fred_series(series, fred_api, frequency='a', starttime='1776-07-04', endtime='9999-12-31', transform='lin')[source]
Retreive and economic indicator from FRED® API
- Parameters:
series (str) – A time series ID, such as GDP.
fred_api (str) –
website. (Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED) –
frequency (str) – The frequency of data. The default value is ‘a’ for annual data; ‘q’ is for quarterly data; ‘m’ is for monthly data
starttime (str) – The first date, as a string, of the time series data to retrieve. The default value is ‘1776-07-04’.
endtime (str) – The last date, as a string, of the time series data to retrieve. The default value is ‘9999-12-31’.
transform (str) –
Example
from fredeco.fredData import fred_series
fred_series(series=’GDP’,fred_api=’4e5rty8wfr’)
- fredeco.fredData.units(data)[source]
Unit of each series of data frame of FRED® data.
This function returns a list
- Parameters:
fred_api (str) – Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED website.
data (data frame) – a data frame of indicators retreived from FRED®. All columns names should be FRED® indicators IDs.
Example
from fredeco.fredData import units
units(fred_api=’4e5rty8wfr’,df)
fredeco.fredKey module
fredeco.fredSearch module
- fredeco.fredSearch.fred_info_series(fred_api, series)[source]
Find the information that describe an economic indicator.
This function returns a dictionnary of information that describe a series, such as its title, if it is seasonally adjusted or not, the date of last update, the unit used as measure, the notes where data source may be found etc.
- Parameters:
fred_api (str) – Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED website.
series (str) – A time series ID.
Example
from fredeco.fredSearch import fred_info_series
fred_info_series(series=’GDP’,fred_api=fred_api)
- fredeco.fredSearch.fred_list_series(fred_api, category_id=0)[source]
Find the series of a category
This function returns a data frame with information related to all series for a specific category of data provided by FRED.
- Parameters:
fred_api (str) – Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED website.
category_id (int) – The id for a category of series. The default value is 0, which is the root category.
Example
from fredeco.fredSearch import fred_list_series
fred_list_series(fred_api, category_id=125)
- fredeco.fredSearch.fred_search(fred_api, text)[source]
Search for series related to one or several keywords.
This function returns a data frame of variables related to the keywords indicated by the user. The data frame provide several information for the series provided, such as their id, title, frequency, units of measurement, some notes related to their respective source etc.
- Parameters:
fred_api (str) – Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED website. Your registered FRED API keys. You can request an API key: https://fredaccount.stlouisfed.org/apikeys
str (text) – The keywords to look for among the variables available in FRED data.
Example
from fredeco.fredSearch import fred_info_series
fred_search(fred_api,text=’Price index’)
- fredeco.fredSearch.fred_vintagedates(fred_api, series)[source]
Historical dates of release of new or revised data
This function returns a list of historical dates of release of new or revised data for a specific series.
- Parameters:
fred_api (str) – Your registered FRED API keys. You can use the function fredKey.request_api_key() to request an API key on the FRED website. Your registered FRED API keys. You can request an API key: https://fredaccount.stlouisfed.org/apikeys
series (str) – A time series ID.
Example
from fredeco.fredSearch import fred_vintagedates
fredSearch.fred_vintagedates(fred_api,series=’GDP’)
Module contents
Changelog
Release 2. fredeco 0.1.1 - Date: 2023-07-14
Added
Added CHANGELOG.rst to the root of the package, and changelog.rst in docssource.
Added the text of changelog in documentation.
Added more information in the project metadata, via pyproject.toml.
Fixed
Fixed some errors in documentation.
Release 1. fredeco 0.1.0 - Date: 2023-07-12
Added
First release of fredeco.